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1 RESEARCH PROGRESS AND ACTIVITIES
REPORT

During the last eighteen months of the grant our work concentrated on two
main research topics:

(i) "Parallel and Sequential Iterative Methods for Linear and Non-
linear Systems". Much of the work on this topic concentrated on the
convergence and rate of convergence of parallel asynchronized methods
for se ling linear systcms _.i-isng, on the one hand, from the numer-
ical solution to partial differential equations and, on the other hand,
from least squares solution to rectangular systems which arise in ap-
plication such as image reconstruction from incomplete tomographical
data. The mathematics behind the analysis of these two applications
of the asynchronized parallel methods is quite different.

Recently we have been able to extend our convergence results to asyn-
chronized methods for solving nonlinear systems. One application now
consists of tomographic reconstruction from incomplete data where the
image is constrained to lie in a bounded convex set such as an n di-
mensional box.

(ii) "Reachability Problems for Dynamical Systems". Here we con-
centrated on developing numerical methods to test whether the trajec-
tory of a linear differential system emanating from a given initial state
becomes from some point onwards nonnegative. We particularly char-
acterized when such intial states are symbioisis points, meaning that
from some point onwards all populations become nondecreasing.

As a by-product of the work on these topics we also had to solve various
theoretical problems which can be described under the heading:

(iii) "Problems in Nonnegative Matrices and their Applications".

We shall describe the main results which were obtained on these topics in
the next section of this report. We strongly believe that an examination of
the results which were achieved over the life of the grant shows that many of
the goals which were suggested in the intial 1987 proposal and in the annual
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and progress reports which have been submitted since, have been realized.
Quite a few of the questions that have been raised have been answered, but
not always with the solution that was conjectured.

Since the beginning of the work on the proposal, 15 papers which sum-
marize our results on the above three topics have been submitted for publi-
cation. Their titles are as follows:

On parallel and sequential iterative methods

1) (with P. J. Kavanagh) "Consistency and convergence of the parallel mul-
tisplitting method for singular M-matrices," SIAM J. Matrix Analysis
Appl., 10(1989), pp. 210-218.

2) (with L. Eisner and I. Koltracht) "On the convergence of asynchronous
paracontractions with application to tomographic reconstruction from
incomplete data," Lin. Alg. Appl., 130(1990), pp.65-82.

3) (with A. Hadjidimos) "Convergence domains of the SSOR method for
generalized consistently ordered matrices", J. Comp. Appl. Math.,
33(1990), pp. 35-52.

4) (with M. Hanke) "Preconditioning and splittings for rectangular sys-
tems", Numer. Math., 57(1990), pp.85-95.

5) (with E. Elsner and B. Vemmer) "The effect of the number of processors
on the convergence of the parallel block Jacobi method", Lin. Alg.
Appl., 154-156(1991), pp.311-330.

6) (with M. Hanke and W. Niethammer) "On the SOR method for sym-
metric positive definite systems", Lin. Alg. Appl., 154-156(1991),
pp. 457-472.

7) (with L. Elsner) "Monotonic sequences and rates of convergence of asyn-
chronized iterative methods", submitted to Numer. Math.

8) (with L. Elsner and I. Koltracht) "Convergence of sequential and asyn-
chronous nonlinear paracontractions", submitted to Numer. Math.

On the reachability . problem

9) (with R. J. Stern) " Discrete approximations to reachability cones of
linear differential equations," Lin. Alg. Appl., 120(1989), pp. 65-79.
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1u) (with R. J. Stern and M. Tsatsomeros) "The reachability cones of essen-
tially nonnegative matrices", Lin. Multilin. Alg., 28(1991), pp.213-
224.

11) (with M. Tsatsomeros) "Symbiosis points for linear differntial systems",
Lin. Multilin. Alg., 30(1991), pp.49- 59 .

On nonnegative matrices and applications

12) (with R. E. Hartwig and N. J. Rose) " An algebraic-analytic approach
to nonnegative basis, " Lin. Ag. Appl., 133(1990), pp.77- 88 .

13) (with I. Koltracht) "On the inverse M-matrix problem for real symmet-
ric positive definite Toeplitz matrices", SIAM J. Matrix Anal. Appl.,
12(1991), pp.310-320.

14) (with H. J. Werner) "Nonnegative group inverses", Lin. Alg. Appl.,
151(1991), pp.85-96.

15) (with H. Schneider) "Principal components of minus M-matrices", sub-
mitted to Lin. Multilin. Alg.

During the first half of the period in which this grant has been in effect
we have also co-authored a book in connection with the second research
topic listed above. The title of the book is " Nonnegative Matrices in Dy-
namic Systems". Its other authors are A. Berman and R. J. Stern and it
was published in the Series in Pure and Applied Mathbmatics, Wiley Inter-
science, New York, 1989.

Since the start of the grant we have presented results from our work and
acknowledged the support of the Air Force in conferences and colloquia as
follow: "Special Session on Modern Trends in Matrix Theory and its Ap-
plications", AMS Annual Meeting, January, 1988; "Oberwolfach Meeting
on Numerical Algebra and Parallel Computations", Oberwolfach, February
1988; "Workshop on Iterative Solutions to Singular Systems", Univ. of Karl-
sruhe, Karlsruhe, West Germany, March 1988; "SIAM 3rd Conference on
Applied Linear Algebra", Madison, May 1988; "International Symposium
on Computational Applied Math.", Leuven, Belgium, July 1988; "NATO
Advanced Study Institute on Numerical Linear Algebra, Digital Signal Pro-
cessing and Parallel Algorithms", Leuven, Belgium, August 1988; "Confer-
ence on Iterative Methods for Large Linear Systems (dedicated to David
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M. Young)", University of Texas, Austin, October 1988; "A Conference on
Approximation Theory and Numerical Linear Algebra (dedicated to R. S.
Varga)", Kent State University, Kent, Ohio, March 1989; Northern Illinois
University Conference on "Linear Algebra, Numerical Linear Algebra and
Applications", DeKalb, Illinois, April 1989; "The Householder Symposium
XI on Numerical Linear Algebra", Tyl6sand, Sweden, June 1990; Meeting
on "Numerical Linear Algebra", Oberwolfach, Germany, April 1991; "Haifa
VII Matrix Theory Conference", Haifa, Israel, June 1991.

The referencing within the report is as follows. Papers cited, but not
co-authored by the P.I., are referenced by numbers in the text and the key
is given after section 3. References to papers co-authored by the P.I. are
numbered by [Nxx], where xx refers to the paper number in the P.I.'s vitae
which is attached at the end of this report.
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2 ASYNCHRONOUS ALGORITHMS FOR LARGE
LINEAR SYSTEMS

In this section we describe our research concerning the convergence and the
acceleration of convergence of a certain model of a parallel chaotic (also
known as asynchronized) iteration scheme. Some of the problems we en-
countered come from the fact that we tried to apply the same asynchronized
model to linear systems whose coefficient matrices arises in different appli-
cations and also to nonlinear systems. This means that for each application
we had to find the inherent mathematical properties which make the conver-
gence of the algorithm and its acceleration possible. Each type of system,
in turn, gives rise to different problems in the actual implementation of the
algorithm.

The chaotic iteratiol method which we have in mind has the following
form: We are given

i) m linear or nonlinear operators Bl,..., Bn.

ii) A computation cycle, namely, a fixed time period T > 0, and a reg-
ulated sequence integers on m, that is a sequence of integers {ij} , with
I < ij < m and such that

{1,2,...,m} C {i,...,ij+T-1}, Vi .1 (2.1)

iii) m nonnegative diagonal matrices El, I = 1,... ,m, whose sum is the
identity matrix. (They are sometimes called weighting or masking matrices.)

iv) A parallel machine with k processors and a host node.

We perform the iteration:

X(j +r) )  I (_- E,, )x(j + r - 1) + Ei, Bi, x, j = 1,2 .... (2.2)

Our model works as follows: At time j a processor, call it for now the
subject processor, which has just completed a previous task is assigned
the task specified by ii, namely, by the operators Ei. and Bi,. This means
that it begins to calculate the vector u = Ei B i x(j). Note that only the
entries of u corresponding to the nonzero diagonal entries in E,, need be
computed. The number r, -- 1, rj T, then represents the number of
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similar tasks completed by other processors before the subject processor
completes its present computation. When this computation is (lone, tie
sum x (j + *j ) = u+ (- Ei, )x(j +r j - 1) is formed by the host processor and the
subject processor is then assigned task ij+r,. The existence of a computa-
tion cycle T > 0 as given by (2.1) means that there exists a time period T
such that in every T successive iteration, the global approximation to the
solution is corrected at least once by each of the operators BI,..., Bin.

We have proved the convergence of (2.2) when the chaotic process is used
to solve iteratively two quite different types of linear systems

Ax = b. (2.3)

The first type usually arises from a finite differences approximation to second
order partial differential equations subject to boundary value conditions.
There A is frequently a monotone matrix, meaning it is nonsingular with
A- 1 > 0. The operators B1, I = 1,...,m, are then iteration matrices
induced by m weak regular splittings of the matrix A, that is, by m splittings

A = M - N1, (2.4)

satisfying M, is invertible with

M - 1 >0 and B = Mr-Nt! 0. (2.5)

The second type of linear systems to which we have applied (2.2) are rect-
angular .vstems (2.3) wbich arise ip irnage reconstruction from incomplete
data as, for example, in well-to-well tomography used in geophysics. Previ-
ously the cyclic Algebraic Reconstruction Technique (ART), which itself is a
generalization of the Kaczmarz projection method, has been applied to find
the least squares solution of minimal norm to such systems. The cyclic ART
method, which is also closely related to the successive overrelaxation (SOR)
method (see Koltracht and Lancaster [1] and Hanke and Niethamimer [i),
is a sequential method where we apply in a cyclic order the m operators
B1, each of which corresponds to an orthogonal projection onto a subspace
spanned by a row or a group of rows of the coefficient matrix A with each
row of the A appearing in at least one of the groups (thus overlapping is
allowed). The proof that the cyclic ART-SOR can be parallelized according
to (2.2) is more intricate than in the case of chaotic iteration for solving
monotone system. It requires certain norm considerations and restrictions
on the weighting diagonal matrices which are not necessary in the case of

6



chaotic iterations for monotone systems.

For both types of linear systems mentioned above we have found various
proofs for the convergence of (2.2) all of which involve the embedding of
the process as a sequential iteration process which takes place in higher di-
mensionsal space. In one of the types of embedding, we iterate sequentially
in the kn-dimensional space (recall k is the ni nber of processors and n is
the dimension of the iterates in (2.2)) and produce a sequence of iteration
vectors z)j = 1,2,.... The idea now is to prove that the k subvectors of
z(j) E Rnk each has a limit point, as j -- oo, equal to the solution of (2.3).
Although we have not used this name formally in any of our reports, we
like to refer informally to this approach to the proof as the "logbook"
approach. This is because for any processor, say the v-th, we think of the
sequence of n-vectors which we can form from the v-th subvectors of the
zO) as keeping a "logbook" of the local approximations in the v-th proces-
sor at each time step of the global iteration. Thus much of the time only
the index of the iteration in the processor is advanced, but the actual value
of the local approximation is unchanged. It only changes when the v-th
processor updates to and downdates from the host processor.

The second type of embedding we have used to prove the convergence of
(2.2) is by blowing up the process in the n-dimensional space to a sequential
process in the nT-dimensional space, where T is the computation cycle. This
is achieved by looking at the iteration

y (.i+,) = C.+r, (.i+r 1 ) + b,

where

ri blocks

(I - E,) 0 ... 0 E,, Bi, 0 ... 0

I .0 0
0 1

C+ ' = " 0 (2.6)

0 ... ... 0 I

0 ... 0 10
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and where andb b
Y(') = z(-lland b =

X(3- T+1)0

Above, under the appropriate assumptions on A and the Bl's, a contrac-
tion occurs at least every time a succession of 2T iterations has been applied.
In otherwords, in an appropriately induced norm on RnT, ICk+2T-l .". Ck[j <

1, Vk > 1.

One of the goals of our research was to obtain a better understanding
of the meaning and the interpretation of the two embeddings. First, w.
can view rj as Lhe time elapsed (= time--lag) between two updates of the
global approximation by the operator ij. Thus if rj is large, then the sub-
ject processor which received the global approximation x(j) is, by the time
it has finished computing u, using a correction based on a relatively old
approximation to update the current global approximation in the host
node. Using special nested subcones of monotonic vectors in R',T, the cone
of nonnegative vectors in the RT-dimensional space, we were able to prove
in [N611 the following result on the rate of converegence of the model given
in (2.2).

Theorem 1 Let fsj and {r1}= 1 be two sequences of time-laggs such
that

I < s <r.<T, j=1,2_ (2.7)

if
s+ _ sj + 1, j = 1,2,..., (2.8)

then

sup limsup11C0 .. .Cy- 11/j < sup limsupllCj ... Ciy - CII / ', (2.9)

YE~nrJ-00YE~n j-8



where

sj blocks

(I- Ei) 0 ... 0 Ei, Bi, 0 ... 0

I 0 0
0 I

Cj+S ". 0

0 ... ... 0

0 .... 0 1 0

and where jT (T,... ,tT)T E RnT with i being the solution to (2.3).

Let us refer to the iterative processes induced by the sequences of time-
laggs {Isj}5=I and {rj}'__ as the more frequently updtaing process and
the more infrequently updating process, respectively. What the above
result says is this: When sj0+j > sjo + 1 for some jo > 1, then the more fre-
quently updating process uses an older approximation to compute the jo-th
iteration than the approximation it has used in computing the immediately
prcceeding iteration. Therefore condition (2.8) means that when tile more
frequently updating process never "suddenly" uses an older approximation
in computing some iterate than the approximation it has used in computing
the previous iterate, then the rate of convergence of the more frequently
updating iteration is more favorable than the rate of convergence of the
more infrequently updating. We have shown by means of examples that if
condition (2.7) holds, but condition (2.8) does not, then the result of the
theorem is not true.

We have carried out many numerical experiments in connection with
Theorem I and several such are given in [N57]. There we considered the
special case when:

s) = k = const. and ri = k' = const., Vj > 1

and with
k < k'.
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Such a delay will occur when the work among the processors is equally
distributed in which case the constant delay is just the number of processors
minus 1. In the following table, for a typical 80 x 80 diagonally dominant
matrix, we shcw how the increasing the number of processors (viz. increasing
the delay) effects the number of iteration which are necessary to reach a
given accuracy of 10-6. In the table k is the number of processors used by
the machine and J = J(k) is the number of iterations required to achieve
a prescribed accuracy to the solution. The last column is the ratio of the

number of iterations to the number of processors, indicating, roughly, the

number of iterations which each of the processors would have to execute in
parallel if communication overheads are reasonable:

k J J/k k J J/k

1 101 101.0 11 291 26.5
2 134 67.0 12 324 27.0
3 162 54.0 13 352 27.1
4 194 48.5 14 384 27.4
5 204 40.8 15 394 26.3

6 212 35.3 16 402 25.1
7 244 34.9 17 434 25.5
8 261 32.6 18 454 25.3

9 282 31.3 19 474 24.9

10 291 29.1 20 484 24.2

To give a better illustration of this table of iterates let us graph k versus
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The graph dearly points to a conjecture that we have that as the number
of processors increase the speed-up tends to a linear constant and no gain
is achieved by increasing heavily the number of processors.

For rectangular systems of equations we have considered chaotic itera-
tions for computing least squares solutions. As mentioned erlier, the math-
ematics that is needed to demonstarte that such iterations converge is quite
different than for monotone systems. We-attach to this report a recent paper
in which we show that chaotic methods of the form (2.2) can be applied also
to nonlinear systems of equations. This allows us also to consider applica-
tions to finding linear least squares solutions lying in some dosed con,,ex set
which represents a nonlinear constraint on the solution. Such an application
arises in computed tomography from incomplete data.
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3 The Determination of Nonnegative Solutions
to Linear Systems of Differential Equations by
Finite Differences Methods

Consider the system of linear differential equations

i = Ax, (3.1)

where A = (ao) is an n x n real matrix. In many engineering, biological,
and other applications the vector x(t) represents the state of a system at
time t and its components frequently represent the sizes of populations or
species at time t. In some applications (see Luenberger [19791) the matrix
A is essentially nonnegative, that is, aij >_ 0, i $ j. Such a constraint en-
sures that trajectories which emanate from nonnegative initial states remain
nonnegative. Moreover interest centers on trajectories which eventually be-
come and remain nonnegative or trajectories whose velocities (derivatives)
become and remain nonnegative. If the latter condition holds, then,
in time, the system reaches a state from which every species will
not decrease in size thereafter. We call initial points whose trajectories
and their velocities eventually become and remain nonnegative it symbio-
sis points.

From now on we shall suppose that A is essentially nonnegative. Denote
by XA(R .) the set of all points in R? such that the trajectories emanat-
ing from these points become and, due to the essential nonnegativity of A,
remain nonnegative. In [N33] we showed that XA(R+) is a convex cone
which, however, need not be closed or pointed. In a sequence of papers
[N31], [N33], and [N37] we gave formulas for the closure of XA(R') under
various further assumptions on A such as diagonalizability, real spectrum,
etc. These formulas were very difficult to apply for two reasons: (i) they
were too complicated as they involved the intersections of the eigenspaces
of A with various projections of the nonnegative orthant, and (ii) as only
the closure of the reachability cone was determined, there were further com-
plications in applying the formulas to determine whether a given boundary
point of XA(RT) is also a reachability point.

Because of the difficulties we described above we thought of the possi-
bility of applying finite differences methods in order to determine whether a
given point ro E R' is a reachability point. In the simplest finite differences

12



schemes, the so called Cauchy-Euler method, we approximate the solution
at times k = 1,2,... from the quotients

ik - h -1 = AjL1 (3.2)
h

where h is the time-step used by the method. After some rearrangement
we obtain from (3.2) the discrete trajectory of points emanating from io = xo
given by

1k = (I + hA)kio, k = 1,2,.... (3.3)

We see that discretization schemes for systems of ordinary differential equa-
tions thus resemble error analysis for iterative solutions to linear systems of
equations in the sense that both procedures involve powering-up matrices.
It is therefore of no surprise that underlying both are basic features and
problems of the power method for determining eigenvalues and invariant
subspaces.

Observe that if the time step h is small enough to make the matrix
I + hA nonnegative, then if 0io E R' is a point for which there exists an an
exponent ko such that -ik0 is nonnegative, then all subsequent points in the
trajectory emanating from io will remain nonnegative. One result that we
completed proving during the course of this grant represents a considerable
improvement over results which we obtained previously in [N48]. It is the
following:

Theorem 2 ([N54]) Let A be an n x n essentially nonnegative matrix and
consider the linear differential system (3.1). Lct

h(A) := sup{h > 0 II + hA > O}. (3.4)

Then xo E XA (Rn ) if and only if for any 0 < h < h(A) there exists an index
ko such that the discrete trajectory of points (3.3) generated from io = xo
satisfies that

k 0, Vk>k o .

Notice that h(A) can be very large, it is +00 if A is nonnegative, but
in any case it depends only in the size of the diagonal entries of A and is
not "infinitesimal". What the result means is this: "regardless of the ex-
tent to which the continuous and discrete trajectories diverge from
each other, one becomes nonnegative if and only if the other one

13



does, provided only that the time-step h satisfies 0 < h < h(A)".
This is a qualitative as well as a numerical statement about the behavior of
the solutions to systems of ordinary differential equations whose coefficient

matrix is essentially nonnegative. The proof of the above theorem is quite
involved and is the suL_ t of the manuscript "Reachability cones of essen-

tially nonnegative matrices" which has just been accepted for publication in

the journal of Linear and Multilinear Algebra. We mention that quite an

important tool which was used in the proof of the theorem is taken from

an earlier paper [N521 in which we considered an analytic approach to the

question of existence of a nonnegative basis for the eigenspace of a nonneg-

ative matrix corresponding to its Perron root.

The characterization of symbiosis points is done in [N59]. Decompose a
point v E XA(RI) into

V = V+ - V-,

where v+ is the join of all eigenspaces of A corresponding to eigenvalues
with a nonnegative real part and v- is in the join of all eigenspaces of A

corresponding to eigenvalues with a negative real part. Thus v- is in the

stability part of the space since limt.. . etAv- = 0. For v we define the

invariant set of components of v as the set

I(v) = {1<i<n : (etA),=(v+),Vt >}. (3.5)

Thus I(v) consists of the indices of the components of the vector v+ which

remain invariant throughout the entire trajectory emanating from v+. We

prove the following characterization:

Theorem 3 ([N59]) Let A be an nx n essentially nonnegative matrix. Then

a vector v E XA(Rn ) is a symbiosispointfor (3.1) if and only if there exists

a sufficiently large time to such that

j E I(v) =. 0 < (etA v-)j 10, Vt > to, (3.6)

where 1(v) is given in (3.5). Furthermore, if v E XA(Rf+) is a symbiosis

point, then for any j E 1(v), (v+)j = 0 if and only if (et'Av)i = 0 for all

t>0.

We have two comments. First, in the spirit of Theorem 2 we can also

characterize a symbiosis point v E XA(Rn+) in terms of the nondecreasing-

ness of finite differences sequences generated from v (similar to the way

14



in which the sequence in (3.3) is generated from x0) where the step size
h satisfies (3.4). Second in the case when A is weakly stable, meaning
its eigenvalue with the largest real part is the origin, then symbiosis points
admit a matrix-combinatorial structure in the sense that it is possible to
determine apriori which indices 1 < i < n lie in I(v) from a certain block
directed graph of the matrix A. Both of these issues are addressed in [N59].
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19



Matrix Theory", February, 1981.

"The Valencia International Conference on Linear Algebra and its Ap-
plications", Valencia, Spain, September, 1987, (member of Scientific
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